A numerical study of multi-parameter full waveform inversion with iterative regularization using multi-frequency vibroseis data
نویسندگان
چکیده
منابع مشابه
Full Waveform Inversion with Total Variation Regularization
Waveform inverse problems are mathematically ill-posed and, therefore, regularization methods are required to obtain stable and unique solutions. The Total Variation (TV) regularization method is used to resolve sharp interfaces obtaining solutions where edges and discontinuities are preserved. TV regularization accomplishes these goals by imposing sparsity on the gradient of the model paramete...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملFull waveform inversion with extrapolated low frequency data
The availability of low frequency data is an important factor in the success of full waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data below 2 or 3 Hz from the field is a challenging ...
متن کاملMulti-parameter regularization and its numerical realization
In this paper we propose and analyse a choice of parameters in the multi-penalty regularization. A modified discrepancy principle is presented within the multi-parameter regularization framework. An order optimal error bound is obtained under standard smoothness assumptions. We also propose a numerical realization of the multi-parameter discrepancy principle based on the model function approxim...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geosciences
سال: 2019
ISSN: 1420-0597,1573-1499
DOI: 10.1007/s10596-019-09897-6